Editor Manual



Editor Manual

] COLLABORATORS
TITLE :
Editor Manual
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME




Editor Manual iii

Contents

1 Editor Manual 1
LT Contents . . . . . . .o o e e e e e e e e e 1
1.2 Introductionto ChunKit. . . . . . . . . . . L 2
1.3 AmigaRezedit . . . . . . . e 2
1.4 ChunKitFeatures . . . . . . . . o . o o e e 3
1.5 About Version 1.1 . . . . . L L L e e e e 4
1.6 Conditions of Use . . . . . . . . . . . e 4
1.7 Using ChunKit . . . . . . 0 e e 5
1.8 The Format Window . . . . . . . . . . . . e 7
1.9 Editors . . . . . . . L 9
1.10 Executable files . . . . . . . . . L e 9
LI1T I Fles . . . . o e e 14
1.12 Binary Editor . . . . . . . . e 15
1.13 Usingthe Clipboard . . . . . . . . . . . . e e 16
114 Find . . . . o 17
1.15 Bugs glitches and other snafus . . . . . . . . . . . L e 18
1.16 Thingstodo . . . . . . . o L e e 20
1.17 Revision History . . . . . . . . o o e e 20
1.18 NotSoLegal Junk . . . . . . . . e e 21
1.19 NotSoLegal Junk . . . . . . . . e 21
1.20 Easter Egg . . . . . o o o 21

1.21

About the Author . . . . . . . . e e e 22




Editor Manual

1/22

Chapter 1

Editor Manual

1.1 Contents

ChunKit Manual V1.

Introduction

Features

About version 1.1
Conditions of Use

Using ChunKit

The Project Menu
Preferences

The Format Window
Editing Executable Files
Editing IFF Files
Editors

Binary Editor

Using the clipboard

Bugs Glitches and Other Inconsistencies
Things To Do

History

Disclaimer (Not so Legal Junk)




Editor Manual 2/22
About the Author
1.2 Introduction to ChunKit
Computers store all data as sequential strings of numbers in <

one format
or another. Many utilities are available to view and edit files in their
most primitive state, as sequential binary data. However, since most files
are structured in a more complex fashion, it is often useful to view them
in such a structured format. ChunKit is a hex editor designed to view
and edit iff and executable files in such a structured manner.

Rather than dumping the unformated contents of the file to the screen
ChunKit first checks to see if the file is in executable or iff format.
If so, it splits the file into it’s component chunks, allowing you to
examine the components of the file without having to wade through all of
it’s structural information. You can then add, edit or delete any part
of the file.

ChunKit was born while I was experimenting with another project,

Rezedit
I was trying to design a very simple iff file and was <+
experimenting
with a reader program. Since I was just testing out the datatype I had a

reader program, but no writer, and thus had to edit the files by hand.
The first problem I encountered was one that has always peeved me with

binary editors: I couldn’t create a new file. I could edit an existing
file, but starting from scratch was impossible. This annoyance was minor
compared to having to constantly calculate iff form sizes. After making

three mistakes on a 56 byte file I went looking for an iff editor. At the
time the only programs I could find wouldn’t allow editing the files and
crashed my machine frequently. There have been several introduced since
that fulfilled some of my initial requirements, so I added features to
ChunKit to parse binary and executable files.

1.3 Amiga Rezedit

The Macintosh uses an elegant system for managing it’s program’ <=

s data,
called resources. Resources are essentially data structures that are
defined externally as well as internally so that they can be edited
without having to recompile the file. This has many advantages for both
the programmer and the user. For example, once the programmer has set up
the calls to access the resource from a file (s)he can modify the resource
(the position of a gadget perhaps) without having to recompile the file,
speeding the development process. On the other hand, an advanced user can
change hard coded values such as strings in a foreign language, gadget
positions, or even resource id’s (such as device interfaces) that become
modifiable under new versions of the operating system. While resource
editing is an advanced operation it can often allow users to make more
effective use of their software.




Editor Manual

3/22

Because of the way the Amiga operating system is structured it would be
rather easy to add resources in a useful way. The Amiga iff format is
very similar to the Macintosh resource format (in fact the iff committee
based the 4 character iff ID’s on the Macintosh resource ID’s). By linking
an 1ff file into the programs executable and accessing it at load time
the resources could be extracted. The Amiga’s object oriented api would
respond very well to such an addition. Almost all resources could be
represented as taglist’s. A GetRsrcTag() function could obtain a
pointer to this taglist and pass it to functions such as OpenWindowTags () .
(This could all be encapsulated in a function such as OpenWindowRsrc() .)
The user could open the file and open the resource hunk and the WIN
resource to edit the windows TagList. As further tags were added in new
releases of the operating system programs that could make use of them could
be easily modified. (I.e.: adding SA_PLANAR to a screen taglist could
speed up programs that could handle such a modification).

Since most resources would be implemented as taglists there would be
little work involved in adding resources to all system functions except for
providing the various resource stubs to the tag array functions. Most of
the work involved would be in designing the resource structure, and
resolving pointers to the resources containing the appropriate data. (The
easiest way to do this would seem to be to add a reloc32 block to the
resource hunk that would be modified by the rezedit program as the user
edited resource’s.)

The resource structure itself would be one of the most important parts.
One of the big drawbacks of the Mac implementation is that it shows it’s
age (like most of the Mac api). Several resources are limited (for example
the infamous 128 font limit is due to the way fonts are implemented as
system resources) and many don’t do all that they should (creating an
interface is unnecessarily complicated unless you are developing a nearly
obsolete desk accessory). While it would be easy to provide a string
resource, a few chip data resources and a taglist resource and call it
quits, a much more powerful system could be achieved by having nested
resources allowing for more complex functions. For example, opening a
window that contained a series of gadget resources should open the window
and all of the gadgets.

Since ChunKit was written while I was playing around with this idea
it is basically the rezedit program that would be needed. It can edit
the CODE resources (the Amiga hunks) and with slight modification could
parse a data hunk as an iff file and allow editing of the wvarious
taglists within. It’s modular nature would even allow a full featured GUI
designer to be started when the appropriate chunks were edited.
Unfortunately, I currently am not considering working further on the
rezedit project. If you have any comments or feedback on the idea please
send me

email
If a hundred people were interested in the idea I might

start to work on it, but I think this is unlikely and there are other
projects I’d like to pursue that could prove more useful (and interesting).

1.4 ChunKit Features




Editor Manual

4/22

ChunKit has the following features:

— Opens all files

— Displays all iff files in a tree format allowing chunks to be
deleted, renamed or edited. This means you can read and modify
iff files easily without having to worry about iff structure.

- Executable, object and library files can be examined and edited in
a tree format. Each Hunk can be opened and it’s symbol, reloc
or code blocks can be examined and modified. Symbol and debug
blocks can be removed to reduce size and load time.

— New iff and binary files can be created from scratch. If you need
to create a specific file there is no need to edit an existing
file.

- 0S friendly, non modal gadtools interface, streamlined to be as
user friendly as possible (i.e.: There are a lot of features, not a
lot of buttons. The emphasis has been placed upon giving the user
as many useful features as possible without an overwhelming array
of options. If the program can determine something on it’s own it
does so0.)

— Fully supports the Amiga clip board.

— Modular internal design so new types of files and chunks can be
edited in the future.

— Enforcer clean.

- Non features such as non standard file requesters have not been
included. 1If the user prefers some other file requester they can
patch it into their system and all of their applications
can use it and share a common interface.

1.5 About Version 1.1

Version 1.1 of ChunKit is an incremental upgrade from version
1.0
consisting mainly of few small bugfixes and minor features. I would
have liked to have included more improved functionality and eliminated
all known bugs, but this update is long overdue, so I put int the
essential fixes and a few minor additions.

The main purpose of this release is to fix the nast gadget refresh
bug that hung the machine under 3.1, as well as to correct my email
address so that everyone would know who wrote this thing. I actually
bought 3.1 and fixed the bug last summer, but since I have been

working night and day at my new job I never got around to uploading it.

For a complete list of changes see
history.

1.6 Conditions of Use

Conditions of Use

Well, I'm not going to tell you not to send me money, but I’'m also

<_>




Editor Manual 5/22

not going to require you to send me any if you use ChunKit. I spent a lot
of time working on ChunKit, but I also learned a lot and even occasionally
enjoyed myself :-). If you really like ChunKit you could give me something
I would prefer to money - a Jjob. I’1ll be looking for a full time position
between September and December 95 and would love to do development work on
the Amiga or UNIX. I would also be interested in a position that would
allow me to learn and develop for OS2 or the Macintosh.

If you do find ChunKit useful, or just interesting I would appreciate a

letter

, postcard, what have you, with any feedback and a description
of what use you’ve found for ChunKit (the more unusual the better). Again
I won’t require you to send me a letter (I’d hate to have people lying
awake at night thinking "oh oh... I forget to send Pat a letter telling him
what I used his program for..." :-) ) but I would really be interested in

any feedback.

The only restriction I place on the use of ChunKit is that you don’t use
it to crack or copy other people’s software. You may examine file
structure and modify files for your own use where permitted, but please
don’t steal other people’s programs or ideas.

You can distribute ChunKit freely but you cannot charge for it (above
the price of the distribution medium), and you must keep the archive
intact, with all files and documentation. If ChunKit is distributed on a
magazine cover disk or with a commercial product I would like a letter
detailing where I can obtain a copy of the magazine or product.
Distributions such as the Aminet CD and Fred fish are more than welcome to
include ChunKit in their distribution - I have purchased both of these
archives and have found them to be invaluable.

1.7 Using ChunKit

Using ChunKit

To start ChunKit from the workbench simply click on it’s icon. If you
want to open a file select ChunKit and shift double click the file. From
the cli type ChunKit followed by the file to open, if any.

If no file is specified the program will either prompt you for a file
name or a file type (iff or binary) depending on preferences. Depending on
what type of data the file contains one of two windows will open up: a

format

window or an
editor window

Regardless of which window opens there are several options which remain
constant: the project menu and the preferences menu.
The Project Menu

The project menu is the same in all windows and contains the tools for




Editor Manual 6/22

loading, saving and creating files. All of the file I/0O functions in the
project menu have a common interface. All functions that delete the

current file from memory (new, open and quit) will ask if you wish to save
the file if it has been modified. If the current file has no file name, you

will be prompted with a requester before saving. If an IO error occurs

during any operation a requester appears with the a description of the

error and abort and retry options. Retry will re-—-attempt the operation and

abort will exit the operation with no further requesters. If a save

operation is aborted the operation that initiated the save will also abort

(i.e.: if you select new and then ask the program to save the current file

before continuing, but there is an error the new operation will not delete

the current file). 1In this case you must restart the operation and select

no when the save request appears in order to delete the current file from

memory.

New: Opens a new empty file for editing and deletes the file currently
in memory.

Open: Prompts you for a file name with a requester and loads it into

(AO) memory. If the load fails the old file is not deleted from memory
unless there was not enough memory. In this case the program
frees the old file first to see if the new file can be opened with
more memory. If this occurs and the save still fails the program
will open an empty file to replace the one that was deleted.

Save: Saves the current file.

(AS)

Save as: Prompts you for a new file name with a requester and saves the

(ARD) current file with this name. If the file already exists you will
be asked if you want to overwrite it.

About: Displays a window containing the program’s name, version and the
authors name and email address.

Quit: Closes all windows and exits the program. If the final save

incurs an error and you abort, the file will be re-opened so you
can edit it to enable it to be saved (this shouldn’t be
necessary). If the file cannot be saved you will have to quit
again and select no from the "Save" requester. Closing all
windows has the same effect as selecting quit.

Preferences

Preferences are the default settings that control the behavior of
ChunKit. They are stored in the programs icon and most can be modified
by the Preferences menu. Both the format window and the editor windows use
a subset of the full preferences menu. The available settings in the
preferences menu are:

Default Bin: If this item is checked, all files are loaded as binary files
even 1if they could be parsed as iff’s or executables.

No Container: This prevents the container chunk on the clipboard from
being pasted. See

using the clipboard
for more
details.

Chunk Style: This setting only applies to iff files. Every iff chunk has
a type and an id. For container chunks (FORM, LIST, CAT,
and PROP) the type describes the chunk contents. For data
chunks the type is simply their parent chunk’s type. The
convention used in commodore documentation is to display




Editor Manual

7/22

the type of data chunks. This information is largely
redundant however, and not displaying it provides a visual
cue as to which chunks are openable. Thus by setting style
to "No ID" the type of data chunks will not be displayed.
Setting it to "Standard" will display the chunks in the usual

way .

Insert: This setting only applies to editors. If checked every

(AI) character typed will shift all other characters to the
right. Otherwise, new text will overwrite the current
character. Turning on insert is currently very slow,
particularly for large files and windows.

Copy FTXT: This setting only applies to editors. If checked data
copied to the clipboard will be copied as FTXT so that
it can be pasted into a text editor. See

using the

clipboard
Save Prefs: Selecting "Save Prefs" will save the current preferences to
to the program’s icon. If the correct tooltypes do not

exist they will be created.
Tooltypes

The following tooltypes in the program’s icon control the various
preference settings:

CHUNKSTYLE=NO_ID : This tooltype is identical to the "Chunk Style"

=STANDARD preference.

INSERT =FALSE : This tooltype is identical to the "Insert" preference.

=TRUE

COPYFTXT =TRUE : This tooltype is identical to the "Copy FTXT"

=FALSE preference.

NOCONTAINER=FALSE : This tooltype is identical to the "No Container"

=TRUE preference.

OPENFILEREQ : If this tooltype is present the program will open a
file requester when started without a file name,
instead of opening an empty chunk. It has no menu
equivalent.

PUBSCREEN =<Name> : If this tooltype is present the program will attempt
to open on the public screen <Name>. If <Name> does

not exist ChunKit will open on the workbench. This
tooltype has no menu equivalent.

1.8 The Format Window

The Format Window

Structural data pertaining to file format (i.e.: iff chunks and executable
hunks) is shown in the format windows. Multiple format windows can be open
at once to view different parts of the same file. The format windows

consist of a listview and a palette of gadgets allowing you to modify the
displayed data. The window title displays the type of chunk being edited
(i.e.: an iff FORM or an executable Code Hunk) and listview contains the

contents of the chunk being viewed. Depending on whether or not the file




Editor Manual 8/22

being viewed 1is
executable
or
iff
the format window will behave differently.
The currently selected chunk is displayed in the string gadget below the
listview. The type and id of iff chunks can be edited by clicking on
the appropriate value in the string gadget. The new type and id will be
checked for validity and if necessary modifications will be made or the
operation will be cancelled. See
Editing Iff Files
for more details.
Executable hunk and block names cannot be edited, but certain blocks that
represent strings and longwords are displayed directly in the format window
and can be edited in the string gadget.

The format window has the following gadgets. Gadgets that cannot be used
in a given context are ghosted.

Open: This will display the contents of the currently selected chunk.
If the chunk contains binary data the appropriate editor will
be opened. Double clicking on an item in the listview has the
same effect as the open gadget.

Close: This will close the currently displayed chunk and display it’s
parent. TIf the currently displayed chunk is the root chunk the
window will be closed.

Window: This will display the contents of the currently selected chunk in

another format window. If the chunk contains binary data the
appropriate editor will be opened.
New: This will create a new chunk in the current window, located after

the currently selected chunk. The chunk will have an ID of NONE.
Delete: This will delete the currently selected chunk. The root chunk
cannot be deleted.
Clone: This will open another format window identical to the current one.

The format window has the following menus:

Project : See
The Project Menu
Edit : The edit menu contains functions for moving chunks to <
and from
the clipboard. See
Using the Clipboard
for more details
on the way the clipboard is handled.

Cut :This will copy the currently selected chunk to the
clipboard and delete it from the file.

Copy :This will copy the currently selected chunk to the
clipboard.

Paste:This will paste the contents of the clipboard next to the
currently selected chunk. The chunk will be checked for
iff or executable consistency before it is inserted in
it’s new location and may be modified, or the operation
may be impossible. See the sections on

Editing Executable




Editor Manual

9/22

Files
and

Editing Iff Files
for more details.

Navigation: The navigation menu contains options for moving through the
various chunks.

Open : This menu item has the same effect as the "Open"
(AT) button.

Close : This menu item has the same effect as the

(A]) "Close" button.

Close Editors: This menu item will close all editor windows
that are currently open.

Preferences:See
Preferences

1.9 Editors

Editors

The actual file contents are displayed by editors. Editors are separate
subprograms that can edit or view different elements of the file. ChunKit
will determine what type of data is selected and launch the appropriate
editor. Currently the only supported editor is the

binary editor

. The
binary editor can open any type of data and display it in both hexadecimal
and ASCII format.

1.10 Executable files

Editing Executable Files

Amiga executable files are divided into several segments called hunks.
The hunks are composed of smaller segments called blocks, including such
things as data, program code, debuging information and relocation tables.
The only official documentation I have found on executable format is in
the AmigaDos Manual and it is wildly inaccurate, or at least highly suspect
in most places. Since the structured format used by ChunKit presents
new names and concepts I’ve included a rough outline describing what all
of the different components are and how they’re represented in the format
window.

Currently executable files are not checked as rigorously as iff files,
and it is possible to create a corrupt file that cannot be reloaded if
certain conventions are not followed. These are listed below. It is
also not possible to create a new, empty block within an executable file.
It is, however, possible to copy and paste within an executable, but it
is not possible to paste a block or hunk into a place where it does not
belong. For example, you cannot paste a code block into an EXEF block




Editor Manual 10/ 22

or a HEAD block. CODE can only exist in a HCOD. If you turn on the "No
container" preference you can paste CODE blocks into all hunk types, but
not into an EXEF or HEAD block (see "

using the clipboard

" for more
details.)

Each hunk or block is represented by a four letter identifier (like a

Macintosh resource) representing it’s type. The current identifiers are:
EXEF:
This is the type of each executable file. Every executable file

will have an EXEF as it’s root node.

HEAD: This is the first block contained in all executable files. It is
not contained in a hunk and contains information for the loader.
It will either be the first block in a file or the first block
in an overlay node (OVRN) . It must contain block SIZE, FRST
LAST and TABL, and may contain one or more NAME blocks.

NAME: NAME blocks may be contained in HEAD blocks. If included
the loader will attempt to open the library name included
in the NAME block when the program is loaded. To edit NAME
click in the string gadget. Names must be less than 256
characters and will be padded with zeros to a longword
aligned length. The last name in the list will automatically
be followed by a null.

SIZE: Each HEAD block must contain exactly one SIZE block. It must
follow any NAME blocks. The size will be the table size of
the TABL block (the size of the TABL divided by four). If
this value is incorrect it will not be possible to reload the
file as an executable. To edit SIZE click in the string
gadget.

FRST: Each HEAD block must contain exactly one FRST block. It must
follow the SIZE block. This is the number of the first hunk
that the loader will load into memory. (Hunks are numbered
starting with zero). To edit FRST click in the string gadget.

LAST: Each HEAD block must contain exactly one LAST block. It must
follow the FRST block. This is the number of the last hunk
that the loader will load into memory. (Hunks are numbered
starting with zero). To edit LAST click in the string gadget.

TABL: Each HEAD block must contain exactly one TABL block. It must
follow the LAST block. The table contains information for
keeping track of the hunks it loads into memory.

HUNK: Hunks are the building blocks of executable files. When a program
HCOD is run the hunks are loaded into memory by the loader. Each hunk
HDAT gets it’s own contiguous chunk of memory. Thus fewer chunks are
HBSS more efficient, but smaller can fit into smaller memory areas.
since each hunk should contain a block of relocatable data they are
named according to the type of relocatable data. If there is no
data (I don’t even know if this is legal) they are simply called

HUNK. 1If they contain a code block they are type HCOD. If they

contain DATA they are type HDAT, and if they contain a bss block

they are type HBSS. Hunks may also contain other blocks with
debuging or relocation information.

UNIT: Hunk’s may contain one UNIT block. Only object files should
contain UNIT blocks, as they indicate the start of a program




Editor Manual

11/22

NAME :

CODE:

CODC
CODF
CODX

DATA:

DATC
DATF
DATX

BSS

BSSC
BSSFE
BSSX

RE32:

RS32:

RE16:

RELS8:

DR32:

unit. To edit UNIT click in the listview.

Hunk’s may contain one NAME block. Only object files should
contain NAME blocks, as they are used to merge hunks together.
If you want to force two hunks to be merged by the linker

give them the same NAME. If you want to prevent two hunks from
being merged give them different NAME’s. To edit NAME click in
the listview.

Hunk’s may contain one CODE block. CODE blocks contain
assembly language instructions. They are one of the three
relocatable block types and may be loaded into chip, fast or
any memory depending on the last character of their name. A
third type of memory, extended is not currently supported by
the loader and thus is not supported by ChunKit. CODE blocks
must have length that is divisible by four. TIf a CODE block

is made that is not longword aligned and the file is saved it
will not be possible to load the file as an executable.

Hunk’s may contain one DATA block. DATA blocks contain binary
data that will be available to the program. They are one of
the three relocatable block types and may be loaded into chip,
fast or any memory depending on the last character of their
name. A third type of memory, extended is not currently
supported by the loader and thus is not supported by ChunKit.
DATA blocks must have length that is divisible by four. If a
DATA block is made that is not longword aligned and the file is
saved it will not be possible to load the file as an
executable.

Hunk’s may contain one BSS block. BSS blocks describe the size
of a chunk of memory that the loader will allocate for the
program’s use. This memory will be cleared to all zeros. They
are one of the three relocatable block types and may be
allocated in chip, fast or any memory depending on the last
character of their name. A third type of memory, extended is
not currently supported by the loader and thus is not supported
by ChunKit.

Hunk’s may contain one RE32 block. RE32 blocks contain
relocation information pertaining to the current hunk.

RE32 blocks contain one or more pairs of HNKN and RELO

sub blocks. The HNKN and RELO sub blocks in an RE32 block
contain 32 bit offsets to be added to 32 bit objects.

Hunk’s may contain one RS32 block. RS32 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in an
RS32 block contain 16 bit offsets to be added to 32 bit
objects.

Hunk’s may contain one RE16 block. RE16 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in a
RE16 block contain 16 bit offsets to be added to 16 bit PC
relative offsets in code. RE16 hunk’s only appear in object
files as the hunks to which they refer are merged into the
current hunk when the program is linked.

Hunk’s may contain one REL8 block. REL8 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in a
REL8 block contain 8 bit offsets to be added to 8 bit PC
relative offsets in code. REL8 hunk’s only appear in object
files as the hunks to which they refer are merged into the
current hunk when the program is linked.

Hunk’s may contain one DR32 block. DR32 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in a




Editor Manual 12/22

DR32 block contain 32 bit offsets to be added to 32 bit
objects. The offsets referred to in the RELO sub blocks are the
distance from the base of the current block to the base of the
hunk specified in the HNKN sub block. DR32 hunk’s only appear
in object files as the hunks to which they refer are merged
into the current hunk when the program is linked.

DR16: Hunk’s may contain one DR16 block. DR16 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in an
DR16 block contain 16 bit offsets to be added to 16 bit
objects. The offsets referred to in the RELO sub blocks are the
distance from the base of the current block to the base of the
hunk specified in the HNKN sub block. DR32 hunk’s only appear
in object files as the hunks to which they refer are merged
into the current hunk when the program is linked.

DRE8: Hunk’s may contain one DRE8 block. DRES8 blocks are identical
to RE32 blocks except that the HNKN and RELO sub blocks in an
DRE8 block contain 8 bit offsets to be added to 8 bit
objects. The offsets referred to in the RELO sub blocks are the
distance from the base of the current block to the base of the
hunk specified in the HNKN sub block. DR32 hunk’s only appear
in object files as the hunks to which they refer are merged
into the current hunk when the program is linked.

HNKN: Each of the different type of relocatable blocks contain
one or more HNKN block’s. The HNKN is the number of
the hunk to be used by the next RELO block.

RELO: Each HNKN block must be followed by a RELO block. The
RELO block contains a series of offsets into the current
hunk’s relocatable block. The values at these addresses
will have the address that hunk number HNKN was loaded
into added to them. Thus, references in the current
hunk to the specified external hunk will point to the
correct address. RELO blocks must have length that is
divisible by four. TIf a RELO block is made that is not
longword aligned and the file is saved it will not be
possible to load the file as an executable.

EXTR: Hunk’s may contain one EXTR block. Extr blocks contain a list
of DEF, ABS, RES, REF3, REF1l, REF8, DRF3, DRF1l, DRF8 and COMM
sub block’s. EXTR block’s should not appear in executable
files as the references should be resolved by the linker.

DEF : EXTR block’s may contain one or more DEF sub blocks.
Each DEF contains one NAME and one SMBO block. The
NAME is the name of the symbol, and SMBO is the
offset of the symbol in the relocatable block.

ABS : EXTR block’s may contain one or more ABS sub blocks.
Each ABS contains one NAME and one SMBO block. The
NAME is the name of the symbol, and I’'m not quite sure
what the SMBO is. (Sorry).

RES : EXTR block’s may contain one or more RES sub blocks.
Each RES contains one NAME and one SMBO block. The
NAME is the name of the library?, and I'm not gquite sure
what the SMBO is. (Sorry).

REF3: EXTR block’s may contain one or more REF3 sub blocks.

REF1l Each REF3 contains one NAME and one SREF sub block. The

REF8 SREF block contains a list of symbolic references

DRF3 within the current block. If it is within a REF3 sub

DRF1 Dblock the SREF contains 32 bit references. Within a REF1

DRF8 sub block 16 bit references, and 8 bit references in a




Editor Manual

13/22

OVER:

OVRN:

LIB

INDX:

REF8 sub block. Finally DRF3, DRF1l and DRF8 sub blocks
contain base relative references.

COMM: EXTR block’s may contain one or more COMM sub blocks.
Each COMM contains one NAME, one COMM and one SREF sub
block.

SMBO: Hunk’s may contain one SMBO block. SMBO blocks contain pairs
of NAME and SYMB sub blocks. SMBO block’s contain information
for symbolic debugging of a file and can thus be deleted from
executable files where the programmer has forgotten to do so
to reduce size and optimize loading. NOTE: The actual format
of SMBO blocks is identical to DEF ABS or RES sub blocks
contained within an EXTR block, however since SMBO blocks only
contain SYMB sub blocks the sub blocks are omitted for
clarity. What this means is that opening a SMBO block reveals
a list of NAME and SYMB blocks, whereas an EXTR will have an
extra level of DEF ABS or RES blocks before the NAME and SYMB
blocks can be seen.

DEBU: Hunk’s may contain one or more DEBU block’s. DEBU blocks
contain raw debuging information, that is compiler specific.
Debug blocks may be deleted from an executable to reduce size
and optimize loading. DEBU blocks must have length that is
divisible by four. If a DEBU block is made that is not
longword aligned and the file is saved it will not be possible
to load the file as an executable.

If a file uses overlays for it’s loading there will be an OVER block

after the last hunk loaded initially (specified in the HEAD). These

hunks will typically contain the overlay manager code. The OVER
block contains SIZE, MAXL, OTABL and TABL sub blocks.

SIZE: Each OVER block must contain exactly one SIZE sub block.

The size will be the upper bound of the complete overlay TABL
(the size of the TABL divided by four). If this value is
incorrect it will not be possible to reload the file as an
executable. To edit SIZE click in the string gadget.

MAXL: Each OVER block must contain exactly one MAXL sub block after
the SIZE block. MAXL is the maximum level the overlay table
uses (the first level is zero). If this value is incorrect it
will not be possible to reload the file as an executable. To
edit MAXL click in the string gadget.

OTBL: Each OVER block must contain exactly one OTBL sub block after
the MAXL block. The OTBL is the ordinate section of the
overlay table and should contain MAXL + 1 longwords all equal
to zero (kinda redundant eh?).

TABL: Each OVER block must contain exactlly one TABL sub block after
the MAXL block. The TABL is the actual overlay table, with
24+ (MAXL - 1) entries.

If a file uses overlays there will be a series of overlay nodes

(OVRN) following the overlay table (OVER). Each OVRN contains

a HEAD block followed by the hunks that will be loaded with that

overlay (either HUNK, HCOD, HDAT or HBSS).

The new format link libraries contain a LIB block. The LIB actually

contains all of the hunks of the library. LIB blocks can only appear

in executable files.

LIB block’s are usually followed by and INDX. The INDX blocks have a

rather complex structure, but currently ChunKit does not parse them

and merely opens them as a large binary block. INDX blocks must have
length that is divisible by four. If an INDX block is made that is
not longword aligned and the file is saved it will not be possible




Editor Manual 14 /22

to load the file as an executable.

1.11 Iff Files

Iff Files

Interchange file format was developed early in 1985 by electronic arts to
provide a flexible format for exchanging data between applications. It
consists of a syntax for encapsulating data and a series of file types that
fit within this syntax. There is a very good explanation of the iff format
in appendix A of "The Amiga Rom Kernel Manual: Devices". For the purposes of
editing iff files I have included a brief summary of iff format, and the
conventions that ChunKit applies to them.

Iff files are built out of chunks. Every chunk is identified by a four
character ID. There are two main chunk categories: container chunks and data
chunks. Container chunks contain other chunks, and data chunks contain
binary data. By nesting different data chunks within a single container,
applications can define different attributes in an upwardly compatible way as
well as providing different representations of the same data for different
uses.

The four container chunks are FORM, LIST, CAT and PROP. Each one has a
four character type identifier describing the data contained within. Every
iff file must have a FORM, LIST or CAT chunk as it’s root chunk. The type
name for container chunk’s is more restricted than for other chunks in order
to make it possible to use the type in the file name on limited file systems
such as MSDOS. If you attempt to give a container chunk an inappropriate type
you will receive a warning. If you attempt to rename the root chunk such
that it is no longer a container chunk ID ChunKit will give you a warning.
Furthermore, each iff file can only have one chunk at the root level. If you
attempt to insert a chunk into the root level you will receive an error.

FORM chunks are by far the most common type of container chunk. FORM’s
can contain other chunks and even other FORM’s. If you rename a FORM chunk
such that it is no longer a container chunk you will be warned and asked if
you wish to delete it’s contents.

LIST chunks are a special type of container chunks for containing rather
complex data. LIST’s contain normal FORM, LIST and CAT chunks like normal
FORM’ s but they can also contain PROP chunk’s which provide global defaults
for the contained chunks. LIST chunks cannot contain regular data chunks,
and you will receive an error if you try to insert a data chunk into one.

PROP chunks can only reside in LIST chunk’s. PROP chunks can only contain
data chunks and trying to insert container chunks into a PROP will result in
an error. PROP chunks must appear before any other chunks in LIST chunks and
will automatically be moved to the top of the LIST. PROP chunks (and thus
LIST’s) are typically hard to parse because of the nested behavior they
exhibit. TIf a LIST contains another LIST there can be multiple PROP’s that
override each other’s settings, as well as the settings contained in the FORM,
LIST or CAT chunk’s after the PROP chunk’s. Thus, it is usually necessary to
use a stack (as provided by the iffparse library) to process the properties
stored in PROP chunks correctly.




Editor Manual 15/22

CAT chunks are similar to FORM chunks except that they contain a series of
similar data (i.e.: a group of ILBM’s or FTXT chunks).

All other chunks are data chunks. They contain the actual data of the iff
file. 1If a data chunk is renamed such that it is a container chunk you will
be asked if you want to delete the data in the chunk.

1.12 Binary Editor

The Binary Editor

The binary editor provides an interface for viewing and editing raw data
contained within a file. The binary editor window show’s a hexadecimal
representation of the data on the left, and an ASCII representation on the
right. There are two cursors, one in the hex and one in the ASCII
representation of the data. The active cursor will highlight the text in
white, whereas the inactive cursor will highlight the text in black. The
hexadecimal representation is currently limited to displaying the data in
longword blocks. Clicking in either of the display regions will move both
cursors to the indicated location. If the cursor is dragged with the mouse
button held down an area of data will be selected. Draging the cursor past
the end of the window will scroll in the appropriate direction. Pressing
the tab key will toggle the active cursor between the two windows. If the
cursor is not visible when a character is typed the window will scroll such
that it is. If any data is highlighted when typing is commenced the data
will be deleted before the new data is inserted. Typing will either insert
or overwrite depending on the

insert mode preference
In insert mode
typing a hexadecimal character will insert a byte with the left nyble equal
to zero. The cursor keys can be used to navigate within the document and
pressing shift and cursor down or up will move to either end of the document.

The binary editor window has the following gadgets.

Length: This is a display of the current length of the file in
hexadecimal.

Position:This is the current position of the cursor in hexadecimal.

(AP) Entering a new value will move the cursor to the indicated
position.

Scroller:The right side of the window contains a scroll bar. Moving the
scroller will adjust the data viewed. Pressing the arrows at the
bottom of the scroller will scroll the data by one line either up or
down.

The binary editor window has the following menus:

Project : See
The Project Menu
Edit : The edit menu contains functions for moving chunks to <+
and from
the clipboard. See
Using the Clipboard
for more details
on the way the clipboard is handled.




Editor Manual

16 /22

Cut :This will copy the currently selected data to the
clipboard and delete it from the file.
Copy :This will copy the currently selected data to the

clipboard.
Paste:This will paste the contents of the clipboard at the
current cursor position. If any text is already

selected it will be deleted.
Navigation: The navigation menu contains options for locating data.

Find : This will open the
search requester

button.
(AF)
Next : This will highlight the next occurence of the current
(AN) search item.
Last : This will highlight the last occurence of the current
(AN) search item.
Preferences:See
Preferences

1.13 Using the Clipboard

Using the Clipboard

Most of the clipboard handling in ChunKit is fairly straightforward
and automatic, however, because of the low level nature of some of the
operations it is sometimes necessary to know exactly how the clipboard
handling works. For simple operations, however, no preparation is
required.

The Amiga clipboard is designed to use i1iff format to provide a standard

way for applications to send and receive data. Since ChunKit deals
directly with iff files (even executable files are stored internally in
iff format) it is a simple matter copy most data to the clipboard.
Neverless the are complications due to the format of iff files.

An iff file must have either a FORM LIST or CAT as it’s outermost node.

Thus, if ChunKit needs to copy one of these chunks to the clipboard it

can simply dump it and it’s contents. However, if the chunk is a data or
PROP chunk it must be placed in a container. The simplest container to
chose is the chunk’s current parent. Thus if you copy a CRNG chunk that

is contained in a FORM ILBM to the clipboard it will copy a FORM ILBM
containing the CRNG. When you attempt to paste it back ChunKit will
check to see if you are pasting it into a FORM ILBM. If so it will
remove the FORM ILBM container and just paste the CRNG. Otherwise, the

whole ILBM will be pasted. (If you pasted it into a FORM ANIM for
example). This is usually useful, since CRNG chunks or only valid with
ILBM’s. This behaviour can be suppressed by enabling the "no container"

preference, which will always prevent the container from being pasted.
This is useful if you want to copy a data chunk into a container of a

different type, without getting the original container embedded in the new.

The process is similar when copying from the binary editor. The data




Editor Manual 17 /22

selected will be made into a miniature of the chunk being edited and
inserted into a container of it’s parents type. This data can then be
inserted anywhere into the file and it will have the same parent chunk

and data chunk as the original. When pasting to a binary file, the

first data chunk in the first form will be opened. This means any data

can be copied into the chunk being edited - even if copied from a different
program and the data format’s are incompatible. Thus you could paste text
into an executable to modify the error messages.

There is also a preference in the binary editor to override this
behaviour to allow the copying of text. By selecting "copy FIXT" the data
will be copied into a FORM FTXT with the data being in a CHRS block
regardless of the type of the data chunk. Thus, the data can be pasted
into a text editor. This option must be used with care however, since the
data is not checked for validity and could contain invalid CHRS data. How
other applications would respond to having such data pasted is unknown.

1.14 Find

The Find Window

The Find window provides a way to search through data for a given string.
When first opened it contains a row of gadgets, a string gadget, and a string
display gadget. The data to be searched for is entered in the string gadget
and the actual string to be searched for will be displayed in the display
gadget. When data is entered into the string gadget it is parsed and the
actual search string is displayed in the string display gadget. The data
entered will be interpreted in one of several ways:

Context: If context parsing is enabled the string gadget will parse the
string in the most likely format for which it is wvalid. Thus
"123" would be parsed as an int, "$123" as hex, "1.23" as a
float and ""123"" as text.

Guess: Guess parsing is the same as context parsing except that if the
string is ambiguous (i.e.: it could be either a float or an int
as in the case of "123") and the last string was one of the

possible types it will be parsed with that type. Thus "1.23"
will be parsed as a float. Following this "123" would also
be parsed as a float.

Integer: If the string contains only the digits 0 - 9 it will be parsed
as an integer. Currently all integers are parsed as long words.
The string display gadget will show "Integer = $<Hex
representation of integer>" to indicate that the data was parsed
as an int. Signed and unsigned values are allowed.

Float: If the string represents a non integral number it will be parsed
as a floating point in one of several formats. The string
display gadget will show either "FFP = $", "IEEE = $" or
"IEEED = $" followed by the hexadecimal representation of the
number depending on whether the number was parsed as fast
floating point, IEEE or IEEE double.

Hexadecimal:If the string contains only the digits 0-9 and A-F or is
preceeded by ’'S$’ or "0x" it will be parsed as a hexadecimal
string. Hexadecimal strings may be the full length of the string
entry gadget and are byte aligned. This means that if the
string "ABC" is searched for, and the data contains the longword




Editor Manual

18 /22

String:

The search

"OABC" it will not be found. The length of the string need not
be even, however, so "ABCO" will be found. The string display
gadget will show "$<Hex representation of integer>" to indicate
that the data was parsed as a hexadecimal string.

If the string is not a valid member of any of the above formats
or is enclosed in double quotes ('"’) it will be interpreted as
text. The outermost quotes will be eliminated and the string
display gadget will show ""<String>"". Note that the string
will be enclosed in quotes even if it was entered without them.
The outermost quotes will not be a part of the search string.
If case sensitivity is active the string will be displayed in
all caps.

window has the following gadgets when shrunk:

| « : This will highlight the previous occurance of the search string and
close the search window.

« : This will highlight the previous occurance of the search string.

Expand : This will expand and shrink the search window to display more
options.

» : This will highlight the next occurance of the search string.

Hitting enter a second time in the string input gadget will have the

same effect as this button.
» | : This will highlight the next occurance of the search string and
close the search window.

The search

window has the following additional gadgets when expanded:

Parse Input: This is a cycle gadget allowing the user to determine how

Convert FP:

the data will be parsed. It contains all of the different
options for parsing the data.

This determines how floating point data will be converted.
If set to FFP the numbers will be parsed in fast floating
point format. IEEE will parse the numbers as single
precision IEEE and IEEED as double precision IEEE. None
will prevent floating point conversion from occuring.

Case Sensitive: If checked, all text searches will be case sensitive.

1.15 Bugs glitches and other snafus

1. Bugs
Bugs are errors in the way the program executes and performs.

These include errors in the data produced by the program, enforcer
hits and most operations the program performs that it was not
intended to as designed.

Copying FTXT from a binary editor window does not check that the
data copied into the CHRS chunk is valid data. This could
confuse other programs that expect CHRS to be CHRS.

Executable blocks are currently not rounded up to longword

boundaries. This means that editing a block so that it has
an odd number of bytes will allow the creation of a file that
cannot be read in again as an executable file. This doesn’t

apply to NAME or UNIT blocks.

New format library files will become even more corrupt with this
problem. The size of the container LIB chunk won’t be written
correctly (since the program isn’t aware that it is incorrect).




Editor Manual

19/22

2.

Glitches

Bug

Glitches are inconsistencies in the normal operation of the
program. They’re not bugs because they cause no incorrect output
to be generated, but they still interfere with the logical
behaviour of the program. For example closing all windows whenever
the space bar was pressed on a Tuesday would be a glitch.

— The scroller gadget in the BinEd window sometimes leaves strange
artifacts. I had fixed this problem by not using GT_GetIMsg in
my event loop but when I added the position and offset gadgets
I had to reintroduce it. This doesn’t have any negative effects
but it looks bad. Hopefully this will be cleared up when I
implement the binary editor as a BOOPSI object linked to a
BOOPSI scroller (if anyone knows about this artifacting please
send me a

letter

— INDX blocks for the new format libraries are not parsed, they are
simply loaded as one block of binary data.

Reports
ChunKit has been thoroughly, but not exhaustively tested, so

it is certain that certain bugs remain. I would thus appreciate
it if you would

mail

me a report of any bugs or glitches you
find in the program. Since this is the first realease there are
probably quite a few small errors. Unfortunately I don’t have
access to another Amiga, so ChunKit has only been tested on an
A2000 with an 030 running 2.04, 2.1 and 3.1. I realize you
aren’t beta testers but please try to isolate the problem and
make bug reports as descriptive as possible. Saying the program
crashed when you click the "new" button tells me little, but
saying it crashes every time you click "new" while in a chunk
"FORM 666 " tells me where to look for the error. I can’t fix a
bug if I can’t reproduce it (usually). Please include the
version number of ChunKit and if an error message is involved
please state it word for word.

n

In particular I am looking for any of the following errors:

1. Enforcer hits. These are the highest priority since fixing
one enforcer hit usually corrects five other bugs. Please
include the hunk and offset, the violation and any other
information you have.

2. Guru’s. Please include the full number and if possible a way
to reproduce the error.

3. File corruption. ChunKit should write all files as byte for
byte copies of the original. (Consequently it should be able
to open it’s output in the same format that it was saved.) It
may inadvertently fix some errors in the file, but this is not
desired behaviour. If you discover a file that ChunKit

modifies on it’s own please report the type of file and the
change (if at all possible send me a copy of the file if it’s
not private or non-distributable).

4. File format. If a file is modified by ChunKit and then




Editor Manual 20/ 22

saved, it should be a valid file in the original format.

Thus ChunKit should be able to load it again with the same
format it originally had. There are currently some exceptions
to this rule for executable files. See bugs.

5. Documentation. I would appreciate hearing about any errors or
inconsistencies contained in the documentation. The purpose
of the documentation is to make ChunKit easier to use and
understand, and thus it must be as accurate as possible.

1.16 Things to do

In the next release of ChunKit I hope to include:

- Rewrite the binary editor as a BOOPSI class. This should reduce code
size and increase modularity so I can implement new editors more easily.
The new class would have a virtual co-ordinate box as it’s superclass
(a sub class of gadget class) which would be useful elsewhere in
the program.

- Rewrite the memory manager to speed up insertion. For upwards
compatibility all access to blocks of memory is through a memory
manager. Currently this memory manager is pretty brain dead - it just
keeps one big contiguous block and does copy operations for insertion
and deletion. A segmented memory manager that stored memory in blocks
would speed things up considerably.

- Write a dissasembler for viewing code block’s. (This is one reason
I'd like to implement the Binary Editor as a BOOPSI gadget) .

- Opening a Symbol should open the relocatable block of the chunk at
the designated entry point. This would make it much easier to examine
code and data hunks.

- Write a custom editor for iff struct chunks . By parsing a text file
with structure definitions a template could be opened for different
iff chunks. This would prevent the internal format of the chunks from
being violated and make it much easier to edit many common chunks.

I got this idea while reading about a product in
comp.sys.amiga.announce. Unfortunately I’ve never seen the product
and forget the author’s name. (I would like to take a look at it
since it seems to do most of what I initially wanted ChunKit to do).

— Better type checking for executable hunks. 1I’d like to make it
harder, if not impossible to create illegal hunks and blocks.

- Add an undo function everywhere I can.

- An Arexx port. At first I thought it would be utterly useless to add
an arexx port to ChunKit, but I’ve thought of a few uses for one
since. It isn’t a high priority and thus won’t appear anytime soon.

1.17 Revision History

Version 1.1 Released:

December 10, 95: Fixed my address in the documentation. It was correct in
the about requester but the version in the documentation
was utterly useless unless you happened to attend the
University of Waterloo. Also added a pointer to my home




Editor Manual

21/22

page where the latest version of ChunKit is kept.

December 10, 95: Corrected the menus so they would use the 0S 3.1 colours.

August 24, 95: I had unwittingly left an update gadget call between calls
to BeginRefresh and EndRefresh. This caused a few odd
glitches under 2.0, but resulted in a complete system hang
under 3.1 whenever a file requester obscuring the binary
window was closed. Thanks to Tetsuo Tawara for reporting
this bug.

August 24, 95: Added the public screen tooltype.

Version 1.0 Released:

NOTE: Several people who made suggestions and bug reports do not have their

names listed here. I apologize for this omission, but I experienced

an error that deleted all of the old mail from my account and I lost
their names.

1.18 Not So Legal Junk

Disclaimer

This bit just says that if ChunKit corrupts your hard disk, your files, or

your life I’'m not to blame. In other words, you use ChunKit at your own risk.

As with any program which modifies the contents of files it is thus advisable
to work on a copy to avoid damaging the original.

1.19 Not So Legal Junk

Disclaimer

This bit just says that if ChunKit corrupts your hard disk, your files, or

your life I’'m not to blame. In other words, you use ChunKit at your own risk.

As with any program which modifies the contents of files it is thus advisable
to work on a copy to avoid damaging the original.

1.20 Easter Egg

EASTER EGG

I was too lazy to put any Easter egg in the program so here’s one in the
Docs. If you stripped the ASCII out of the amigaguide you’1ll find this
quite easily. Otherwise you either got lost or had too much time on your
hands.

Feel free to skip, disparage, discard or otherwise ignore this. Since
only the bored, curious, or otherwise distracted will read this, here is
where I can put all of the inappropriate doc things, such as gratuitous




Editor Manual 22 /22

ASCII art: ’
gWe@8c~+s
,Weews8/~, ’N.
WeR4QG_t- 'W
d@WAQRWbg! -, 'b

1QRAQQRE4ME (Y - Yi
]QRRWRWA4\/, 11
QRWRWE@D*Z+Nm_. @

]P8b 1i@W [-Q@@-!Q@KY[ <- Easter Egg
1 b8KmmE@WzWmW+==+Ld [
M@@8QRK@A[-f -" ,A
]@RRWASZ,D’ .- 1
/@QREWEED] +! W
l@QAQWAN_" " d!
Y@QRE@MGG/ ' iP
V@REWb.! gf
"VM@W_Df
~*%@QQRAf"

1.21 About the Author

I am a fourth year student of computer science at the University
of Waterloo. Currently I am employed by a company called Gemsoft in
Toronto where I am writting a screen saver for the Macintosh. I can
be reached by email at

progers@undergrad.math.uwaterloo.ca

for at least the next year. The latest version of ChunKit can be found
on my home page which is at

http://www.undergrad.math.uwaterloo.ca/~progers/
If you insist on using snail mail my address will be

Patrick Rogers

2571 St Clair Ave E.

Toronto Ontario, Canada

M4B 1M2

until April.




	Editor Manual
	Contents
	Introduction to ChunKit
	Amiga Rezedit
	ChunKit Features
	About Version 1.1
	Conditions of Use
	Using ChunKit
	The Format Window
	Editors
	Executable files
	Iff Files
	Binary Editor
	Using the Clipboard
	Find
	Bugs glitches and other snafus
	Things to do
	Revision History
	Not So Legal Junk
	Not So Legal Junk
	Easter Egg
	About the Author


